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ey UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
2 3 NATIONAL EXPOSURE RESEARCH LABORATORY
i 7 3 CINCINNATI, OH 45268

August 13, 1996

} . - OFFICE OF .
. RESEARCH AND DEVELOPMENT
.". Kenneth E. Osborn
. .East Bay MUD
- P. 0. Box 24055
- Oakland, CA 94623

Dear Mr. Osborn:

. I “vote negative on the draft of Part 1030E, proposed on

2-7/15/96 for inclusion into the 20th Edition of STANDARD METHODS,
" .for the following reasons:

) The draft begins by defining two terms, the "critical level®
(L.) and the "detection limit" (I,), as they were defined by Currie,
- and proposes statistical procedures for producing estimates

appropriate to each term. -~ My problems with these terms, as
..qefined, are as follows:

In the Introduction, the draft says, "...when the true
concentration is at the I, the probability of a measured
concentration below L, is 1%. The detection limit I? may be relied
upon to lead to a detection in 99% of the cases..." It should be
obvious that these statements assume that analytical results above
L. are reported as produced.. However, by longstanding tradition,
many laboratories 'do not report analytical results below sonme
reporting limit, which is usually whatever they have been given as
a "detection limit". If L, is used as the reporting limit, then
50% of the analytical results from a sample with a true
concentration will be reported as "less than L,*, and therefore
will NOT "lead to a detection." 1In other words, if is used as
a reporting limit, as it is likely to be if it is called the
"detection limit", the assumptions underlying L, are violated.

. Before Currie, I, was commonly called the "detection limit" by
- _.many. authors.and is still called the detection limit by many (e.q.
“ACS).. I think it is appropriate to call L. the detection limit

"~ because it can be used as a reporting limit without violating any
of the assumptions underlying L, or lf. As noted on page 3 of this
draft, the USEPA has defined the MDL, which is conceptually very

similar to L, and which is also frequently used as a reporting
limit.

-as defined, has-been frequently called the "quantitation
With L. as the reporting limit and a sample at a true

concentration of L, there is a 99% probability that the actual

" - quantitative analytical results will be preserved and, therefore,
available for interpretion regarding detection or for any
guantitative interest that a data user might have.

imit ¥
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The definition of I assumes that L. is known with certainty
and that a common estimate of L, is universally used as the
reporting 1limit. Since 'L, estimates often have considerable
‘uncertainty associated with them, usually because they were made
from' a limited -number of. analytical results, and since the
-estimate being used may differ among laboratories, some authors
‘have proposed more conservative "quantitation limits", i.e., higher
than . Examples of this are the limit of quantitation (LOQ)
defined by ACS and the PQL defined by the USEPA. "Quantitation
...1imits" relate to.limits on the interpretation of data by users,
. -e.g., regulators, and should NEVER be used as reporting limits by
data producers, i.e., laboratories.

.- As the draft says on page 3, the true standard deviation at
the. MDL (Opt) may<not be equal to the true standard deviation at C
(o). .However, since C = 3 to 5 tlmes.MDL you should be able to
»assume O, 2 O, - -Thus,  if -there is any bias,.the MDL procedure
should produce a conservative, i.e., high biased, estimate of the
true MDL.

Regarding "calibration designs" (pages 3 to 6), if they are
conducted "...in the range of the hypothesized detection limit...®
. as specified at the bottom of pages 3 and 4, I think they are
indispensable as a preliminary study whenever there is little or no
information available regarding the true detection limit. However,
even though the second sentence of the bottom paragraph on page 4
says, "Beginning with a calibration design ... with concentrations
throughout the range of L. to L,...,"™ the illustrations of the
calibration approach, Figures 1 to 5, all show a MUCH broader
concentration range. This is a common problem with the calibration
design studies I have seen conducted, and I agree with the author’s

. statements {see page 5) regarding the undesirable influence that

concentrations much above L, can have on this approach to
estimating L. and/or L,. I think it is better to do the calibration
study over a concentration range that tops out near L, than to try
to compensate for too broad a concentration range by using any of
the weighed linear regression approaches mentioned.

I see no justification for u51ng tolerance-interval
calculatlons as'a basis for making the point estimates,. and
. Prediction-interval calculations are designed for p01nt es imation
- . and provide more than adequate statistical protection against these
. estimates being too low. Also, regarding the detection decision,
-it is always made relative to each individual analytical result,

. not to a group -of results.

Regarding .the discussion on pages 7 and 8:

- ; Y agree that the analysts in studies designed to produce

detection 'limit estimates must not know the contents or the
concentration of study -samples, and ideally should not know the
. samples are different from routine samples. One limitation:; I have



no problem with the replicate samples in an MDL study being
.dispersed throughout :a run, day, etc., so long as they are all
analyzed within the same calibration of the analytical systenm.

. e I ‘also. agree “that analysts should not modify original
analytical results _in these. studies, although, as with routine

"’;;data, analysis of related quality control data would be a valid

reason for not reporting specific analytical results produced when
the system was judged to be "out .of control.®

.+ - -And I agree that analyte-present experiments (like MDL
studies) are better than analyte-absent experiments.

. However, I STRONGLY disagree with the idea of including among-
“instrument, among-analyst  or among-laboratory components of
variability into' detection 1limit estimates. The variability

relevant to each detection question is the variability of the
‘analytical system that produced the response in question and how

that relates to the average signal produced from analyses of zero-'

_concentration samples IN THAT SYSTEM. Often the objective is to
estimate the generic or average detection limit, so it is highly
desirable to pool estimates of single-operator variability from
several sets of replicate analyses, even from different
laboratories, obviously the more data the better, but I believe

that inclusion of other sources of variability is irrelevant and
inappropriate.

What is needed in STANDARD METHODS? Is it a discussion of the
various approaches to the detection problem what is needed, or is
the need for a 51ng1e, simple and straightforward recommendatlon7
If the former is the objective, .it .still seems necessary to
conclude with a clear recommendation regarding usage of the term
"detection - 1imit" and procedures for developing statistical

estimates appropriate to that usage. The current draft does NOT
.conclude with a clear recommendation.

: Once a good preliminary estimate of the detection 1limit is
available, I think the procedures used by the USEPA to estimate the
MDL, for possible use as a reporting limit, and from it the ML or
"PQL ..as . "guantitation .limits", .are. practical .and ' reasonable
approaches to recommend in STANDARD METHODS.

Sincerely yours,

Zm@/@ﬂf’\

i . . Paul W. Britton, Statistician
: ’ 'Natlonal Water Quality Assurance Programs Br.
: Ecological Exposure Research Div.

cc: L4{:11am Telliard, Office of Water (4303), USEPA, Wash., DC
Henry Kahn, Offlce of Water (4303), USEPA, Wash., DC
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STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER

JOINT TASK GROUP BALLOT
Ballot#31
TO: Joint Task Group for Section_1030 Data Quality
ISSUE DATE: _July 15, 1996 CLOSING DATE: August 15, 1996

RETURN BALLOT TO: Kenneth E. Osbom
East Bay MUD
P.O. Box 24055
Oakland, CA 94623
. 510-287-1434
. FAX: 510-465-5462

TOPIC: See enclosed copy of 1030 Data Quality

i YES NO ABSTAIN
QUESTION: Do you approve of the enclosed document as
presented? () X

Negative votes must be accompanied by a statement of the specific technical objections to the method or they will
not be considered. Negative votes should be cast only when specific, substantive technical objections are stated
which, if not corrected, will compromise the validity of the method. Editorial comments, correcting English or
arithmetic in the method, are encouraged also, but they do not constitute the basis for a negative vote.

Comments:

Signed VM L\_)@;/n:

Printed Name PAJ_JL L\J ?K/TT’OA/
Date 37/ / 3/ 76
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July 15, 1996
To:  See Distribution List

From: Kenpeth E. Osbomn

S (510) 287-1434 (phone)
(510) 465-5462 (fax)
KOSBORN@EBMUD.COM

Re:  Draft for Sta_ndard Methods Part 1030E, Detection Limits
Please review the enclosed guidance on detection limits (part1030E) by Dr. Robert Gibbons.
This is an excellent start and provides us an opportunity to develop the concept(s) of the

detection limit more fully and rigorously than in the current edition of Standard Methods.

- In your review, consider the audience, nature and inherent complexity of this topic, and the real
need to provide a rigorous definition of the detection limit.

If you approve of the draft as written, indicate a “yes’ on the accompanying ballot. If you would
like to see changes or a major revision, please provide a revision of the draft.

If you have access to e-mail, please send me your revisions electronically. I you have any
questions, call me at (510) 287-1434.

KENNETH E. OSBORN

Quality Assurance Officer
KEO:dh
Enclosures
w:\wppublic\keo\sm1030e.wp
EAST BAY MUNICIPAL UTILITY DISTRICT
© - 'ADMINISTRATION : LABORATORY MAIL
375 1Mh'STREET ~OAKLAND, CA 946074240 - 2020 WAKE AVENUE - OAKLAND, CA 94607 PO. BOX 24055 ¢ ODAKLAND, CA 94623-1055

TEL: {51D) 835-3000 TEL: (510) 287-1722 OR 1794 =FAX: (510} 465-5462 TEL: (510) 835-3000


mailto:KOSBORN@EBMUD.COM

1030 E. DETECTION LIMIT

1. Introduction

The detection limit is a statistical estimate that is used to make the binary
decision of whether or not the true concentration in a given sample is greater
than zero. A frequent confusion regarding the detection limit is that measured
_ concentrations exceeding the detection limit are quantifiable. This is clearly
not the case. Measured concentrations above the detection limit only allow
" us to conclude that the analyteis present in the sample at a concentration
greater than zero. Quantification limits have been developed for the purpose
of quantitative determination!?. ~

Currie! defined the detection limit Lp as the true concentration “at which
a given analytical procedure may be relied upon to lead to a detection.” Note
that the emphasis here is on “true concentration” and not measured concentra-
tion. Currie also defined the “critical level” L as the measured concentration
“at which one may decide whether or not the result of an analysis indicates
detection™. It is critically important to understand the difference between L¢
and Lp. When the true concentration is equal to L¢ the probability of detect-
ing it is only 50%. In contrast, when the true concentration is at the Lp the
probability of a measured concentration below L¢ is 1%. The detection limit
Lp may be relied upon to lead to a detection in 99% of the cases, whereas
the critical level does not. For this reason, the following discussion is focused
primarily on estimation of the detection limit.

2. Determining the Detection Limit

There are many different names for the detection limit which only leads
to further confusion. Often the problem arises due to confusion between the
. detection limit and the critical level, the choice of statistical multiplier, use of
blanks, a single concentration or a multiple concentration calibration design.
Unfortunately different investigators have given different names to the various
 statistical approaches to estimating the same thing, i.e., the detection limit.
~ While the distinction between the critical level and the detection limit are qual-
itative and are therefore deserving of different names, the other distinctions are
not. In the following sections, several statistical approaches to estimating the
detection limit Lp are described. The choice among these different estimators
should be based on the different assumptions made by these methods, the suit-
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that the risk of false positive and false negative rates is equivalent (i.e.. 5;_, =
21— = z) then the detection limit is simply:

Lp=Lc+ 230p = -(Uo + Up) 2Lc .

or twice the critical level. For a = f = .01, the detection limit is therefore
4.660¢. If the true concentration is LD then the probability of a measured
valued below L is 1%.

In reviewing Currie’s method it is critically important to note that the
only case considered is the one'in which the population values g¢ and op are
known. In practlce, however population values are never known and the meth-
ods described ‘in following sections are required to incorporate uncertainty in

... .sample-based estimates of these statistics in computing detection limit esti-

mates.

In an attempt to provide small sample properties to Currie's Lo, Glaser®
replaced the normal distribution with Student’s t- dlstnbutlon and called it the
“method detection limit” (MDL) 1. e,

. MDL = t[0.0l .n-l]sC ’

where s¢ is defined as the standard deviation of n analytical replicates spiked
at a single concentration C. This is an estimate of the critical level and not
a detection limit therefore it is not considered further despite it’s widespread
use by USEPA (see Gibbons for a review of statistical problems with this
approach and corresponding responses by its proponents at USEPA).

The critical assumption underlying single concentration desigas is that vari-
ability is homogeneous in the range of possible spiking concentrations and the
true limit of detection. This assumption is implicit in use of observed spiking
concentration variance as an estimator of the true variance at the limit of de-
tection. This assumption is rarely realized in practice.

2.2 Calibration Designs

- An alternative method for estimating detection limits is a calibration de-
sign. In this case, a series of samples are spiked at known concentrations in the
range of the hypothesized detection limit, and variability is determined by ex-
amining the deviations of the actual response signals from the fitted regression
line of response signal on known concentration. In these designs, it is gener-
ally assumed that the deviations from the fitted regression line are normally
distributed.



where s(y;) is the estimated uncertainty of a predicted instrument response
(or measured concentration) § = by + b,z at true concentration r (see Ap-
pendix). The detection limit is defined as the point at which we can have 99%
confidence that the response signal is greater than L¢; therefore, Hubaux and
Vos suggest that the response signal be obtained graphically by locating the
abscissa corresponding to L¢ on the lower prediction limit (see Figure 1). A
_more direct solution for Lp is provided in the technical Appendix.

The method of Hubaux and Vos assumes that variability is constant through-
out the range of concentrations used in the calibration design. If this as-
sumption is violated, then the detection limit will be overestimated because
variability at high concentrations are given equal weight as those at lower
concentrations. Clayton!! suggested a variance stabilizing square root trans-
" formation which helps to some extent but does not eliminate the problem.
Oppenheimer!? proposed an estimator of Lp based on WLS regression which
provides a general solution to this problem but requires an iterative solution
(see Appendix). Gibbons!? provide a noniterative computing approximate and
further generalized this result to the case of multiple future detection decisions
by substituting tolerance limits for prediction limits. See Gibbons™!* for a re-
view of this literature.

Illustration

Figures 1-5 display actual and measured concentrations of benzene in 22
five-point concentration calibrations. Figure 1 represents a prediction inter-
val with constant variance and corresponding Hubaux-Vos estimates of L¢
and Lp. Figure 2 presents the same data assoming nonconstant variance and
corresponding WLS prediction limits. Figure 3 represents the same data as
Figure 2 but shows error bands based on a statistical tolerance interval with
95% confidence and 99% coverage. Figure 1 reveals that if we assume constant
variance, in order to incorporate larger variability at higher concentrations,
variability is overestimated at the lower concentrations. In contrast, the WLS
approach described in Figure 2 provides excellent fit to the observed data for
‘both high and low true concentrations. Figure 3 reveals that substitution of
tolerance intervals for prediction intervals provides slightly wider intervals but
yields detection limits that will include 99% of all future detection decisions
whereas prediction limits only provide this level of confidence for a single fu-
ture detection decision. Figure 4 displays the WLS approximation described
by Gibbons and co-workers based on the assumption of proportional variance
and concentration. Figure 4 reveals quite similar results to Figure 2 where
variance is explicitly modeled as an exponential regression function of concen-



some detail by others'>!6, There are several guiding concepts critical for pro-
ducing unbiased detection limit estimates of practical relevance.

First, in analyte present studies, the apalysts must be blind to both the
number of compounds in the sample and to their spiking concentrations. To
achieve this goal, the number of compounds must vary (perhaps randomly)
from sample to sample. Furthermore. the concentration of each constituent
should vary both within and across samples. \Vithout insuring that the analyst
is blind to both presence and concentration of the analyte under study, the
resulting detection limit simply cannot be applied to routine practice in which
such uncertainty must always exist. In practice, it is often impossible to execute
such studies since numerous samples would have to be prepared at widely
varying concentrations. In the absence of this level of experimental control,
standard calibration data in which the analysts are unaware that they are
being tested may have to suffice. The critical issue is that the analysts must
not go back and retest samples that appear to be anomalous relative to the
known spiking concentration.

Second, two or more instruments and analvsts must be used and the as-
signment of samples to analysts and instruments must also be random. Since
in large production laboratories, any one of a number of analysts and/or in-
struments may be called upon to analyze a test sample, this same component
of variability must be included in determining the detection limit.

Third, if multiple laboratories are used or a regulatory agency analvzes
split-samples or additional samples from the facility, then the entire detection
limit study must be replicated in multiple laboratories. Data from a single
laboratory should only be used when it is technically unfeasible to provide
common calibration standards, or to split common standard sampls or a
dedicated laboratory is used for all relevant analyses.

Fourth, the number of samples selected should be based on statistical power
criteria, such that a reasonable balance of false positive and false negative rates
is achieved. For example. if we estimate ¢ by computing s on seven samples,
our uncertainty in o will be extremely large and our resulting detection limit
estimate Lp will also be quite large. By increasing the number of samples
to say, 25, we achieve a much more reasonable estimate of o, and resulting
Lp are greatly reduced. The cost of running a few additional samples is far
cheaper than dealing with the drawbacks of using detection limits incapable of
- detecting hnyﬂung but the largest signals. .

An additional note regarding ana.lyte-absent experiments (i.e., blank sam-
ples), rather than running a series of blank samples at once, they should be
random!ly entered into the analysts’ work load throughout the course of the
day. The purpose of this approach is to ensure that the analysts are blind to
sample composition. The broader question is whether analyte-absent experi-

.
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TECHNICAL APPENDIX

Details of the WLS prediction interval approach described by Oppenheimer!?
are provided in the following. To obtain the Hubaux-Vos result set all weights
k; = 1. To obtain a detection limit based on tolerance intervals see equation
5.3.2 in Gibbons'* and Zorn'".

Compute the weighted least squares regression of measured concentration
~ or instrument response (y) on true concentration (z) for the linear model

c§ = bouw + bruzi, (1)
where .
= BT @

and the weight k; = s?_is the variance for sample i. The weighted residual
variance is :

n

2= [ - g/ Sn = 2). (3)

i=1
and the estimated variance for a predicted value ., is
L 2 1. (zj - 7,,)? ]
V(i;) = s |k + + = , 6
(s [ TR T T - T (6)

where k; is the estimated variance at concentration z;. An upper (1 —a)100%
confidence interval for §,; (i.e., a prediction interval for a new measured con-
centration or instrument response at true concentration z;) is

ﬁwj + tv V(gwj) | (7)

where ¢ is the up;;er (1 - a)100 percentage point of Student’s t-distribution on
n — 2 degrees of freedom?>!8, The WLS estimate of L¢ is therefore

_: tsw ’ 1 (LC - jw)z
te= 317\1’2“ RS SCYT R S N W (€)
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